
Data Indexing Algorithms

Lucian Bornaz

 Academy of Economic Studies, Bucharest, România

ABSTRACT

Although many ways of improving the

performances of database systems exist, the

most efficient one consists in implementing an

effective data indexing mechanism. This must

ensure the balance between the processor,

memory and storage resources of the database

server accordingly to the type, structure, the

physical organization and the cardinality of data,

the type of queries and the number of competing

transactions.

This paper presents an analysis of the most used

indexing algorithms (B+-Tree and Bitmap) in

the nowadays DBRMS and new ways to

increase their performance. Also, it is presented

a new kind of index, generalized index, which

implement all the identified optimizing methods.

Keywords: indexes, indexing algorithms,

database optimization, b-tree, bitmap.

1.INTRODUCTION

Unavoidably, the informational society is based

on large data processing information systems.

The need to store, manipulate and interrogate

these systems requires the implementing of

high-performance database systems, capable of

reacting as fast as possible to the user-submitted

requests.

Although many ways of improving the

performances of database systems exist, the

most efficient one consists in implementing an

effective data indexing mechanism. Thus, the

efficient data indexing based on the type,

structure, the physical organization and the

cardinality of data, the type of queries and the

number of competing transactions may increase

the performance of the database administration

systems and, implicitly, the performance of the

entire information system. To be able to deliver

this performance increase, the indexing

algorithms must ensure the balance between the

various resources of the system (storage device,

memory, processor etc).

2.B+-TREE AND BITMAP INDEXES

The most used indexes in nowadays DBMRS

are B+-Tree and Bitmap. These indexes have a

tree-like structure that is structurally and

functionally identical. Every node of the tree

consists in one index block which contains

several items. Every item store a value and a

reference to the next lower lever block index,

accordingly to the value
1
. This structure is

necessary to efficiently identify the leaf blocks

which contain the pointers to the records.

Trees are read from top to bottom sequentially.

Each node involves a physical read from the

storage device. Because the storage devices are

the slowest devices of the computers, it is

desired to reduce the physical reads as much as

possible.

It is easy to see that number of physical reads

increases with the height of the tree
2
. Reducing

tree height could be done using a larger block

size, a smaller data type, compression

algorithms or through optimizing structure and

functioning of leaf blocks.

Consequently, the analysis of the structure and

functionality of the leaf blocks of the two types

of indexes could show the index specific

elements and performance.

Bitmap indexes

The items of the Bitmap leaf blocks consist of

one value (col0), 2 pointers (col1, col 2) towards

the first and last pages where the records are

stored (Start ROWID, End ROWID) and a

bitmap structure (col3) needed to compute the

record pointers
3
, consisting in a list of 1 and 0

values, one for every record stored in the pages

1
 Kavin Loney, Oracle Database 10g: The

Complete Reference, Oracle Press, 2004;
2
 Douglas Comer, Ubiquitous B-Tree, ACM,

1979;
3
 Julian Dyke, Bitmap Index Internals, 2005;

between Start ROWID and End ROWID (figure

1).

row#0[8013] flag: -----, lock: 0

col 0; len 2; (2): c1 03

col 1; len 6; (6): 01 00 01 82 00 00

col 2; len 6; (6): 01 00 01 83 00 07

col 3; len 3; (3): 00 c2 44

Figure 1 – The structure of the leaf block item of

the bitmap index
4

The record pointers are computed using the

Value, Start ROWID, End ROWID, Bitmap

fields and a conversion table which store the

pointers to the physical location of records

(figure 2).

Figure 2 – Record pointers computation using a

bitmap index

This structure of the leaf block enables a

substantial reduction of the index height by

storing several pointers in the same item but

when data with high cardinality has to be

handled, because of the larger size of the item,

the size of the index grows making it inefficient

(figure 3).

0

100

200

300

400

Le
af

 B
lo

ck
s

Distinct Keys

B+-Tree Bitmap

 Figure 3 – Leaf blocks needed for a 100.000

4
 Julian Dyke, Bitmap Index Internals, 2005;

rows table, an 8 kB page, relatively to the

number of distinct keys
5

Queries are very efficient due to the Bitmap

field. Complex queries using several indexes

entail very efficient binary computations.

However, because the record pointers are

obtained based on computations, more processor

resources are needed. If we are dealing with

tables that have to be frequently updated, the

performance of the index is dramatically

reduced
6
.

Storing several pointers in one item may,

especially when many transactions run

simultaneously, increase the probability of

delays or transaction locks. Thus, as the data

cardinality decrease, the index becomes more

efficient in carrying out queries but

simultaneously the probability of transaction

locks increases when the data is updated.

As the data cardinality increases, the probability

of a transaction locks decreases as well as the

need for processor resources. However, the data

manipulation queries remain inefficient, mostly

because of the high probability of a transaction

lock and because of the significant processor

resources need to update the Bitmap fields and

the conversion table.

It is obvious that Bitmap indexes may not be

efficiently used in OLTP systems where data is

frequently updated. However, their height

reducing mechanisms may be implemented for

B+-Tree indexes keeping in mind the latter’s

specificity.

B+-Tree indexes

B+-Tree indexes have been designed to index

high cardinality data that is frequently updated.

The leaf block items store one value (col0) and

one physical record pointer (col1). This solution,

although increases the index size, reduces the

necessary processor resources and the

probability of transaction locks (figure 4).

row#0[8024] flag: -----, lock: 0

col 0; len 2; (2): c1 03

col 1; len 6; (6): 01 00 01 82 00 00

5
 Julian Dyke, Bitmap Index Internals, 2005;

6
 Jonathan Lewis, Understanding Bitmap

Indexes, www.dbazine.com;

ROWID Rooms

0xAE50 2

0xAE51 4

0xAE52 3
0xAE53 4

0xAE54 4

0xAE55 3

0xAE56 2
0xAE57 3

Bitmap index

0xAE50 1

0xAE51 2
0xAE52 3

0xAE53 4

0xAE54 5

0xAE55 6
0xAE56 7

0xAE57 8

Conversion table

1

0
0

0

0

0
1

0

 Bitmap fields

Value fields: 2 3 4

0

0
1

0

0

1
0

1

0

1
0

1

1

0
0

0

Table of a database

http://www.dbazine.com/

Figure 4 – The structure of the leaf block item of

the B+-tree index
7

Because the pointers are stored within the index,

there is no need of additional computations.

However, complex queries involve large data

types (ROWID), which is inefficient compared

to binary operations.

Queries are very efficient, especially for high

cardinality data, but become inefficient as the

data cardinality decreases.

Sequential data queries are efficient due to the

maintaining of pointers between neighboring

leaf blocks.

The probability of a transaction lock is reduced

because strictly the needed records are locked

but needed resources increase with the number

of locks. Therefore, reducing the number of

locks could improve the database server

performance.

Most modern DBRMS implement a mechanism

of raising the lock level
8
. If too many resources

are to be locked, the DBRMS will lock the next

upper resource which contains all necessary

resources.

Depending of the DBMRS type, the lock levels

are row, page, extend, table, file, database. Other

lock levels could be metadata, application etc.

So, for example, if too many rows are to be

locked, the lock level raising mechanism could

lock the entire page which contains them, or

even an entire extend and so on. Thereby, the

DBMRS has to manage only one lock and

reduces drastically the needed memory and

processor resources.

3.THE GENERALIZED INDEX

Analyzing the main data indexing algorithms

(B+-Tree and Bitmap) implemented in today’s

DBRMS, we see that although they have a wide

applicability, they do not always ensure the

balance between the database server resources.

Furthermore, they cannot adapt either to the

evolution of the physical organization and

cardinality of the data or to the changing number

of simultaneously executed transactions.

7
 Julian Dyke, Index Internals, 2005;

8
 Scaling Out SQL Server 2005,

Realtimepublishers, 2005;

IBM Informix Dynamic Server Performance

Guide;

Comparing the structure, functioning and

performances of B+-Tree and Bitmap indexes,

we can create a new indexing algorithm that

implements only the performance enhancing

elements of the two and that is flexible enough

to allow it to adapt simultaneously with the data

evolution and table usage.

Thus, the new generalized index is derived from

the B+-Tree index, it has the same properties

and functioning mechanisms but it implements a

new type of leaf block item which is able to

store several pointers towards records of the

same value in an uncompressed form, to reduce

the need for processor resources, as follows:

- It doesn’t index the NULL values;

- The root node has at least 2 children nodes if

it isn’t leaf node in the same time;

- Every index block contains at least m-1 items

and a pointer (the index is of m rank);

- If an index block has d-1 pointers, it has d

pointers;

- The leaf blocks have the following

properties:

- They don’t have pointers towards index

blocks;

- They have n items, the item pointers

referring data blocks, for cluster indexes,

of records, for non-cluster indexes;

- Each item stores at least one pointer

towards records.

- The index block size is approx. one page.

Storing more than one pointer into items could

increase the probability of the transaction locks.

So, in order to avoid those locks, the generalized

index implements a mechanism to control the

maximum number of pointers that are allowed to

be stored in any one leaf block item and in any

one leaf block allowing for an optimization of

data indexation relatively on the number of

simultaneously executed transactions. In order

to create this mechanism, the index contains the

following fields:

- WReferences controls the maximum number

of pointers stored into every item and can

have values between 0 and 100 with

following meanings:

- 0 allows the storage of maximum

number of pointers;

- 100 allows the storage of only one

pointer for every item;

- Any other value allows the storage of

Nref pointers:

ferencesWsizeel

sizedb
Nref

Re

100

_

_
max_

 (1)

WReferences>0, N maxϵ N,

db_size is the index block size;

el_size is the item size of the leaf block if

col 2 stores only one pointer.

- ElementFillRatio controls the maximum

number of pointers stored into every leaf

block and can have values between 0 and 100

with following meanings:

- 0 allows the storage of only one pointer;

- 100 allows the storage of maximum

number of pointers;

- Any other value allows the storage of nref

pointers:

max_max_
100

refref N
lRatioElementFil

n (2)

n maxϵ N

ElementFillRatio>0

The control of the maximum number of pointers

stored into the leaf block and into leaf block

items allows the database administrator to

balance the index according to the number of

simultaneously executed transactions. As more

records are stored into the leaf block items as

more transaction locks could take place.

However, if the number of simultaneously

executed transaction is low, storing more than

one record pointer into the leaf block items

could increase the index performance by

reducing the index height (figure 5).

20
40

60
80

100
120

140
160

180
200

20 27 34 41 48 55 62 69 76 83

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

B+-Tree Optimized B+-Tree Generalized index

Figure 5 – The size of leaf block index relatively

to the number of records which hold the same

value, for different kind of indexes
9

The control of the maximum number of pointers

stored into the leaf block and into leaf block

items allows the control at different lock level

(row and page) depending of DBRMS type.

Relatively to the B+-Tree index, the generalized

index provides database systems with increased

performance irrespective of the data evolution,

interrogation types and the number of

simultaneously executed transactions. It can

adapt to the system parameter changes either

though manual configuration or through the

implementation of a self-regulating mechanism.

The index size is reduced and the cost of data

interrogation and handling is diminished.

Relatively to Bitmap indexes, the generalized

index needs lower processor resources and

provides the necessary control to avoid

transaction locks.

Furthermore, the generalized index is a strong

platform for compression algorithms

implementation or other optimization methods.

4.REFERENCES

[1] Douglas Comer, Ubiquitous B-Tree, ACM,

1979;

[2] Julian Dyke, Bitmap Index Internals, 2005;

[3] Julian Dyke, Index Internals, 2005;

[4] Jonathan Lewis, Understanding Bitmap

Indexes, www.dbazine.com;

[5] Kavin Loney, Oracle Database 10g: The

Complete Reference, Oracle Press, 2004;

[6] IBM Informix Dynamic Server

Performance Guide;

[7] Scaling Out SQL Server 2005,

Realtimepublishers, 2005.

9
 Optimized B+-Tree index doesn’t store the

values for subsequently items which store

pointers to the record with the same values

(similarly to the IBM Informix).

http://www.dbazine.com/

